Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.332
Filtrar
1.
Life Sci ; 344: 122566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499285

RESUMO

AIM: This study aims to investigate the hepatoprotective effect of the antipsychotic drug trifluoperazine (TFP) against cyclophosphamide (CPA)-induced hepatic injury by exploring its effect on autophagy and the Nrf2/HO-1 signaling pathway. MAIN METHODS: The hepatotoxicity of CPA was assessed by biochemical analysis of the serum hepatotoxicity markers (ALT, AST, and direct bilirubin), histopathological examination, and ultrastructure analysis by transmission electron microscopy (TEM). The ELISA technique was used to assess the hepatic content of oxidative stress (MDA and SOD) and inflammatory markers (IL-1ß and TNF-α). Immunohistochemical assessment was used to investigate the hepatic expression of NF-κB, Nrf2, caspase-3, as well as autophagy flux markers (p62 and LC3B). The mRNA expression of HO-1 was assessed using RT-qPCR. Western blot assay was used to determine the expression of p-AKT and p-mTOR. KEY FINDINGS: TFP improved CPA-induced hepatotoxicity by reducing the elevated hepatotoxicity markers, and alleviating the histopathological changes with improving ultrastructure alterations. It also reduced oxidative stress by reducing MDA content and upregulating SOD activity. In addition, it exhibited anti-inflammatory and anti-apoptotic effects by decreasing NF-κB expression, IL-1ß, TNF-α levels, and caspase-3 expression. Furthermore, TFP-induced hepatoprotection was mediated by favoring Nrf2 expression and increasing the mRNA level of HO-1. As well, it improved autophagy by increasing LC3B expression concurrently with reducing p62 expression. Moreover, TFP modulated the AKT/mTOR pathway by reducing the expression of p-AKT and p-mTOR. SIGNIFICANCE: TFP significantly protected against CPA-induced hepatotoxicity by upregulating Nrf2/HO-1 signaling along with enhancement of protective autophagy via inhibition of the AKT/mTOR signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Trifluoperazina , Camundongos , Animais , Trifluoperazina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Ciclofosfamida/farmacologia , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
2.
Chem Biol Interact ; 392: 110904, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360085

RESUMO

Osteosarcoma is a prevalent kind of primary bone malignancy. Trifluoperazine, as an antipsychotic drug, has anti-tumor activity against a variety of cancers. Nevertheless, the impact of trifluoperazine on osteosarcoma is unclear. Our investigation aimed to explore the mechanism of trifluoperazine's effect on osteosarcoma. We found that trifluoperazine inhibited 143B and U2-OS osteosarcoma cell proliferation in a method based on the dose. Furthermore, it was shown that trifluoperazine induced the accumulation of reactive oxygen species (ROS) to cause mitochondrial damage and induced mitophagy in osteosarcoma cells. Finally, combined with RNA-seq results, we first demonstrated the AMPK/mTOR/ULK1 signaling pathway as a potential mechanism of trifluoperazine-mediated mitophagy in osteosarcoma cells and can be suppressed by AMPK inhibitor Compound C.


Assuntos
Mitofagia , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifluoperazina/farmacologia , Autofagia , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Anticancer Res ; 44(3): 1051-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423668

RESUMO

BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Vincristina/farmacologia , Aripiprazol/farmacologia , Vinorelbina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Vimblastina/farmacologia , Células MCF-7 , Tioridazina/farmacologia , Trifluoperazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia
4.
Exp Neurol ; 372: 114612, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993080

RESUMO

Edema formation is one of the very first events to occur after spinal cord injury (SCI) leading to an increase of the intrathecal pressure and consequently to serious spinal tissue and functional impairments. Current edema treatments are still symptomatic and/or non-specific. Since edema formation mechanisms are mainly described as vasogenic and cytotoxic, it becomes crucial to understand the interplay between these two subtypes. Acting on key targets to inhibit edema formation may reduce secondary damage and related functional impairments. In this study, we characterize the edema kinetic after T9-10 spinal contusion. We use trifluoperazine (TFP) to block the expression and the functional subcellular localization of aquaporin-4 supposed to be implicated in the cytotoxic edema formation. We also use sodium cromoglycate (SCG) to deactivate mast cell degranulation known to be implicated in the vasogenic edema formation. Our results show a significant reduction of edema after TFP treatment and after TFP-SCG combined treatment compared to control. This reduction is correlated with limited onset of initial sensorimotor impairments particularly after combined treatment. Our results highlight the importance of potential synergetic targets in early edema therapy after SCI as part of tissue sparing strategies.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Ratos , Animais , Medula Espinal/metabolismo , Cromolina Sódica/farmacologia , Cromolina Sódica/uso terapêutico , Cromolina Sódica/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Trifluoperazina/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Edema/tratamento farmacológico , Edema/etiologia
5.
Sci Adv ; 9(43): eadf1332, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878712

RESUMO

Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Quimiorradioterapia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Int J Med Sci ; 20(6): 797-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213674

RESUMO

Currently, no specific and standard treatment for traumatic brain injury (TBI) has been developed. Therefore, studies on new therapeutic drugs for TBI treatment are urgently needed. Trifluoperazine (TFP) is a therapeutic agent for the treatment of psychiatric disorders that reduces edema of the central nervous system. However, the specific working mechanism of TFP is not fully understood in TBI. In this study, the immunofluorescence co-localization analysis revealed that the area and intensity covered by Aquaporin4 (AQP4) on the surface of brain cells (astrocyte endfeet) increased significantly after TBI. In contrast, TFP treatment reversed these phenomena. This finding showed that TFP inhibited AQP4 accumulation on the surface of brain cells (astrocyte endfeet). The tunel fluorescence intensity and fluorescence area were lower in the TBI+TFP group compared to the TBI group. Additionally, the brain edema, brain defect area, and modified neurological severity score (mNSS) were lower in the TBI+TFP. The RNA-seq was performed on the cortical tissues of rats in the Sham, TBI, and TBI+TFP groups. A total of 3774 genes differently expressed between the TBI and the Sham group were identified. Of these, 2940 genes were up-regulated and 834 genes were down-regulated. A total of 1845 differently expressed genes between the TBI+TFP and TBI group were also identified, in which 621 genes were up-regulated and 1224 genes were down-regulated. Analysis of the common differential genes in the three groups showed that TFP could reverse the expression of apoptosis and inflammation genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in the signaling pathways regulating inflammation. In conclusion, TFP alleviates brain edema after TBI by preventing the accumulation of AQP4 on the surface of brain cells. Generally, TFP alleviates apoptosis and inflammatory response induced by TBI, and promotes the recovery of nerve function in rats after TBI. Thus, TFP is a potential therapeutic agent for TBI treatment.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Ratos , Apoptose/genética , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo , Edema Encefálico/etiologia , Edema Encefálico/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Trifluoperazina/metabolismo
7.
Arch Biochem Biophys ; 735: 109521, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657606

RESUMO

Many therapeutics for cardiomyopathy treat the symptoms of the disease rather than the underlying mechanism. The mechanism of cardiomyopathy onset is believed to include two means: calcium sensitivity changes and myosin activity alteration. Trifluoperazine is a compound that binds troponin, and other components of the calcium pathway, which impacts calcium regulation of contraction. Here, the ability of TFP to shift calcium sensitivity was examined in vitro with purified proteins and the impact of TFP on heart function was assessed in vivo using embryonic zebrafish. The binding of TFP to troponin was modeled in silico and a model of zebrafish troponin was generated. TFP increased regulated cardiac actomyosin activity in vitro and elevated embryonic zebrafish heart rates at effective drug concentrations. Troponin structural changes predicted in silico suggest altered protein interactions within thin filaments that would affect the regulation of heart function.


Assuntos
Cálcio , Cardiomiopatias , Animais , Cálcio/metabolismo , Trifluoperazina/farmacologia , Peixe-Zebra/metabolismo , Tropomiosina/química , Troponina/metabolismo , Cardiomiopatias/metabolismo , Sarcômeros/metabolismo , Actinas/metabolismo
8.
Head Neck ; 45(2): 316-328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349408

RESUMO

BACKGROUND: Trifluoperazine (TFP) is a typical antipsychotic primarily used to treat schizophrenia. In this study, we aimed to evaluate whether TFP can be used as a therapeutic agent against nasopharyngeal carcinoma (NPC) and identify its underlying molecular mechanisms. METHODS: We used NPC-TW01, TW03, TW04, and BM to assess the anticancer effects of TFP by using cytotoxicity, wound healing, colony formation, and cell invasion assays. An in vivo animal study was conducted. RNA sequencing combined with Ingenuity Pathways Analysis was performed to identify the mechanism by which TFP influences NPC cells. RESULTS: Our data revealed that TFP decreased NPC cell viability in a dose-dependent manner. The invasion and migration of NPC tumor cells were inhibited by TFP. An in vivo study also demonstrated the anticancer effects of TFP. RNA sequencing revealed several anticancer molecular mechanisms following TFP administration. CONCLUSIONS: The antipsychotic drug TFP could be a potential therapeutic regimen for NPC treatment.


Assuntos
Antipsicóticos , Neoplasias Nasofaríngeas , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Proliferação de Células , Movimento Celular
9.
Anticancer Res ; 42(12): 5773-5781, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36456159

RESUMO

BACKGROUND/AIM: Glioblastoma multiforme (GBM) is one of the most common brain tumors with a poor prognosis. Previously, we reported that trifluoperazine (TFP), a well-known antipsychotic, has anti-glioma activity through the modulation of intracellular calcium levels. The present study aimed to investigate the anti-cancer mechanism of action of TFP on glioma cells. MATERIALS AND METHODS: The effect of TFP on U87MG cells was examined using a viability assay, flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time PCR, western blot analysis, colony formation, and immunocytochemistry. RESULTS: TFP treatment decreased cell viability. To test the possible involvement of COX-2 in the anticancer activity of TFP on U87MG cells, a COX-2 inhibitor was applied. COX-2 inhibitor pretreatment restored TFP-induced reduction in viability to the control level. Additionally, TFP-induced changes in the apoptotic cell population, production of prostaglandins (PGE2, PGD2, 15d-PGJ2), and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ) were ameliorated by COX-2 inhibitor pretreatment. CONCLUSION: TFP suppressed the proliferation of U87MG glioma cell in a COX-2/PPARγ-dependent manner.


Assuntos
Glioma , Trifluoperazina , Humanos , Trifluoperazina/farmacologia , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , PPAR gama/genética , Glioma/tratamento farmacológico , Morte Celular
10.
PLoS Comput Biol ; 18(10): e1010583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206305

RESUMO

Calmodulin (CaM) is a calcium sensor which binds and regulates a wide range of target-proteins. This implicitly enables the concentration of calcium to influence many downstream physiological responses, including muscle contraction, learning and depression. The antipsychotic drug trifluoperazine (TFP) is a known CaM inhibitor. By binding to various sites, TFP prevents CaM from associating to target-proteins. However, the molecular and state-dependent mechanisms behind CaM inhibition by drugs such as TFP are largely unknown. Here, we build a Markov state model (MSM) from adaptively sampled molecular dynamics simulations and reveal the structural and dynamical features behind the inhibitory mechanism of TFP-binding to the C-terminal domain of CaM. We specifically identify three major TFP binding-modes from the MSM macrostates, and distinguish their effect on CaM conformation by using a systematic analysis protocol based on biophysical descriptors and tools from machine learning. The results show that depending on the binding orientation, TFP effectively stabilizes features of the calcium-unbound CaM, either affecting the CaM hydrophobic binding pocket, the calcium binding sites or the secondary structure content in the bound domain. The conclusions drawn from this work may in the future serve to formulate a complete model of pharmacological modulation of CaM, which furthers our understanding of how these drugs affect signaling pathways as well as associated diseases.


Assuntos
Antipsicóticos , Calmodulina , Calmodulina/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/química , Trifluoperazina/metabolismo , Antipsicóticos/química , Cálcio/metabolismo , Ligação Proteica , Sítios de Ligação
11.
Arch Virol ; 167(11): 2203-2212, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920983

RESUMO

Dengue virus (DENV), a member of the genus Flavivirus, family Flaviviridae, is the most widespread viral pathogen transmitted to humans by mosquitoes. Despite the increased incidence of DENV infection, there are no antiviral drugs available for treatment or prevention. Phenothiazines are heterocyclic compounds with various pharmacological properties that are very adaptable for drug repurposing. In the present report, we analyzed the antiviral activity against DENV and the related Zika virus (ZIKV) of trifluoperazine (TFP), a phenothiazine derivative in clinical use as an antipsychotic and antiemetic agent. TFP exhibited dose-dependent inhibitory activity against the four DENV serotypes and ZIKV in monkey Vero cells at non-cytotoxic concentrations with 50% effective concentration values in the range 1.6-6.4 µM. A similar level of antiviral efficacy was exhibited by TFP against flavivirus infection in the human cell lines A549 and HepG2. Mechanistic studies, performed using time-dependent infectivity assays, real-time RT-PCR, Western blot, and immunofluorescence techniques, indicated that uncoating of the virus during penetration into the cell was the main target for TFP in infected cells, but the compound also exerted a minor effect on a late stage of the virus multiplication cycle. This study demonstrates that TFP, a pharmacologically active phenothiazine, is a selective inhibitor of DENV multiplication in cell culture. Our findings open perspectives for the repositioning of phenothiazines like TFP with a wide spectrum of antiviral efficacy as potential agents for the control of pathogenic flaviviruses.


Assuntos
Antieméticos , Antipsicóticos , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Dengue/tratamento farmacológico , Humanos , Fenotiazinas/farmacologia , Fenotiazinas/uso terapêutico , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Células Vero , Replicação Viral
12.
Asian Pac J Cancer Prev ; 23(8): 2863-2871, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037145

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of CaM antagonist, PTZ, and TFP on cell proliferation and migration of colon cancer cells and its impact on POPDC protein expression. METHODS: The 50% inhibitory concentration (IC50) of PTZ and TFP in SW1116, SW480, HCT-15, and COLO205 colon cancer cell lines are measured using MTT. Western blot and immunocytochemistry were used to determine the expression of PCNA, cyclin D1 (CD1), and POPDC proteins. Cell migration was observed using a scratch wound-healing assay. RESULTS: Treatment with PTZ and TFP inhibited colon cancer cells growth in a dose-dependent manner. PTZ and TFP significantly inhibited the activation of proliferation markers, PCNA and CD1, and the migration of colon cancer cells. Furthermore, POPDC protein was significantly suppressed in all cell types of colon cancer, particularly in SW480. Finally, the CaM antagonist upregulates the POPDC1 expression in colon cancer cells. CONCLUSION: These findings suggest that CaM antagonists suppress colon cancer cells proliferation via downregulation of CD1 and PCNA. In addition, POPDC protein could be used as a biomarker in colon cancer, and CaM antagonist could be used to regulate POPDC1 expression. This study suggests that targeting POPDC1 with CaM inhibition could be a potential therapeutic strategy for colon cancer treatment. 
.


Assuntos
Neoplasias do Colo , Trifluoperazina , Movimento Celular , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Trifluoperazina/farmacologia
13.
Tohoku J Exp Med ; 257(4): 315-326, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35644544

RESUMO

Multiple myeloma (MM) is a common hematological malignancy. Bortezomib (BTZ) is a traditional medicine for MM treatment, but there are limitations for current treatment methods. Trifluoperazine (TFP) is a clinical drug for acute and chronic psychosis therapy. Lately, researchers have found that TFP can suppress tumor growth in many cancers. We attempted to study the effects of BTZ and TFP on MM in vivo and in vitro. We concentrated on the individual and combined impact of BTZ and TFP on the proliferation and apoptosis of MM cells via Cell Counting kit-8 assay, EdU assay, western blot, and flow cytometry. We found that combination therapy has a strong synergistic impact on MM cells. Combination therapy could induce cell arrest during G2/M phase and induce apoptosis in MM cells. Meanwhile, BTZ combined with TFP could play a better role in the anti-MM effect in vivo through MM.1s xenograft tumor models. Furthermore, we explored the mechanism of TFP-induced apoptosis in MM, and we noticed that TFP might induce MM apoptosis by inhibiting p-P38 MAPK/NUPR1. In summary, our findings suggest that TFP could synergistically enhance the BTZ-induced anti-cancer effect in multiple myeloma, which might be a promising therapeutic strategy for MM treatment.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Biochem Biophys Res Commun ; 610: 182-187, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468422

RESUMO

Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 µM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Mycobacterium tuberculosis , Cálcio/metabolismo , Calmodulina/metabolismo , Motivos EF Hand , Proteínas Intrinsicamente Desordenadas/metabolismo , Mycobacterium tuberculosis/metabolismo , Trifluoperazina/química , Trifluoperazina/farmacologia
16.
Biomolecules ; 11(10)2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34680086

RESUMO

Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their physiological ubiquity and their prevalence in various diseases, including cancer. NUPR1 is an IDP that localizes throughout the whole cell, and is involved in the development and progression of several tumors. We have previously repurposed trifluoperazine (TFP) as a drug targeting NUPR1 and, by using a ligand-based approach, designed the drug ZZW-115 starting from the TFP scaffold. Such derivative compound hinders the development of pancreatic ductal adenocarcinoma (PDAC) in mice, by hampering nuclear translocation of NUPR1. Aiming to further improve the activity of ZZW-115, here we have used an indirect drug design approach to modify its chemical features, by changing the substituent attached to the piperazine ring. As a result, we have synthesized a series of compounds based on the same chemical scaffold. Isothermal titration calorimetry (ITC) showed that, with the exception of the compound preserving the same chemical moiety at the end of the alkyl chain as ZZW-115, an increase of the length by a single methylene group (i.e., ethyl to propyl) significantly decreased the affinity towards NUPR1 measured in vitro, whereas maintaining the same length of the alkyl chain and adding heterocycles favored the binding affinity. However, small improvements of the compound affinity towards NUPR1, as measured by ITC, did not result in a corresponding improvement in their inhibitory properties and in cellulo functions, as proved by measuring three different biological effects: hindrance of the nuclear translocation of the protein, sensitization of cells against DNA damage mediated by NUPR1, and prevention of cancer cell growth. Our findings suggest that a delicate compromise between favoring ligand affinity and controlling protein function may be required to successfully design drugs against NUPR1, and likely other IDPs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Piperazinas/química , Tiazinas/química , Adenocarcinoma/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Calorimetria , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Ligantes , Camundongos , Proteínas de Neoplasias/química , Piperazinas/síntese química , Piperazinas/farmacologia , Tiazinas/síntese química , Tiazinas/farmacologia , Trifluoperazina/química , Trifluoperazina/farmacologia
17.
Mol Med ; 27(1): 105, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503440

RESUMO

BACKGROUND: Vaccination programs have been launched worldwide to halt the spread of COVID-19. However, the identification of existing, safe compounds with combined treatment and prophylactic properties would be beneficial to individuals who are waiting to be vaccinated, particularly in less economically developed countries, where vaccine availability may be initially limited. METHODS: We used a data-driven approach, combining results from the screening of a large transcriptomic database (L1000) and molecular docking analyses, with in vitro tests using a lung organoid model of SARS-CoV-2 entry, to identify drugs with putative multimodal properties against COVID-19. RESULTS: Out of thousands of FDA-approved drugs considered, we observed that atorvastatin was the most promising candidate, as its effects negatively correlated with the transcriptional changes associated with infection. Atorvastatin was further predicted to bind to SARS-CoV-2's main protease and RNA-dependent RNA polymerase, and was shown to inhibit viral entry in our lung organoid model. CONCLUSIONS: Small clinical studies reported that general statin use, and specifically, atorvastatin use, are associated with protective effects against COVID-19. Our study corroborrates these findings and supports the investigation of atorvastatin in larger clinical studies. Ultimately, our framework demonstrates one promising way to fast-track the identification of compounds for COVID-19, which could similarly be applied when tackling future pandemics.


Assuntos
Antivirais/farmacologia , Atorvastatina/farmacologia , Tratamento Farmacológico da COVID-19 , Pulmão/efeitos dos fármacos , Organoides/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Atorvastatina/química , COVID-19/prevenção & controle , Linhagem Celular , Proteases 3C de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/química , Doxiciclina/farmacologia , Aprovação de Drogas , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/virologia , Modelos Biológicos , Simulação de Acoplamento Molecular , Organoides/virologia , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Trifluoperazina/química , Trifluoperazina/farmacologia , Estados Unidos , United States Food and Drug Administration , Vesiculovirus/genética , Internalização do Vírus/efeitos dos fármacos
18.
Life Sci ; 283: 119849, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343539

RESUMO

AIMS: Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS: Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS: Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE: In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Miocárdio/metabolismo , Fator de Transcrição RelA/metabolismo , Trifluoperazina/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxinas/farmacologia , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Masculino , Camundongos , Miocárdio/patologia
19.
Eur J Pharmacol ; 909: 174432, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416238

RESUMO

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases. In this disease, the immune system attacks oligodendrocyte cells and the myelin sheath of myelinated neurons in the central nervous system, causing their destruction. These conditions lead to impaired conduction of nerve impulses and are manifested by symptoms such as weakness, fatigue, visual and motor disorders. This study aimed to evaluate the ability of trifluoperazine (TF) to improve cuprizone-induced behavioral and histopathological changes in the prefrontal cortex of C57BL/6 male mice. Demyelination was induced by adding 0.2% cuprizone (CPZ) to the standard animal diet for 6 weeks. Three doses of TF (0.5, 1 and 2 mg/kg/day; i.p.) were given once daily for the last 2 weeks of treatment. Treatment with CPZ induced a weight loss during 6 weeks of treatment compared to the control group, which was reversed by the administration of TF. Behavioral tests (pole test and rotarod performance test) showed a decrease in motor coordination and balance in the group treated with CPZ (P < 0.01). Treatment with TF during the last two weeks was able to improve these motor deficiencies. Histopathological examination also evidenced an increase in demyelination in the CPZ group, which was improved by TF administration. In addition, CPZ intake significantly decreased the cerebral cortex levels of p-Nrf2 (P < 0.001) and increased the levels of p-IKB (P < 0.001) and, these changes were normalized in the TF groups. TF administration also reversed the increased levels of nitrite and the reduced activity of the antioxidant enzyme superoxide dismutase associated with CPZ exposure. TF can to reduce the harmful effects of CPZ by reducing the demyelination and modulating the Nrf2 and NF-kB signaling pathways.


Assuntos
Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Modelos Animais de Doenças , Humanos , Proteínas I-kappa B/metabolismo , Masculino , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Transdução de Sinais/efeitos dos fármacos , Trifluoperazina/uso terapêutico
20.
Biochem Biophys Res Commun ; 570: 148-153, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34284140

RESUMO

P-glycoprotein, member of the B-subfamily of the ATP-binding cassette (ABC) superfamily (e.g., ABCB1), has been demonstrated to confer resistance to clinically relevant anticancer drugs. Paradoxically, ABCB1-expressing multidrug resistant (MDR) cells are hypersensitivity or collateral sensitivity to non-toxic drugs. In this report, we demonstrate the capacity of trifluoperazine (TFP), a calmodulin inhibitor, to confer a collateral sensitivity onto ABCB1-overexpressing MDR cells. We show TFP-induced collateral sensitivity to be linked to ABCB1 expression and ATPase activity, as such phenotype is abolished in ABCB1-knockout MDR cells (CHORC5ΔABCB1 clones A1-A3) or with inhibitors of ABCB1 ATPase. TFP-induced collateral sensitivity is mediated by apoptotic cell death, due to enhanced oxidative stress. The findings in this study show for first time the use TFP as a collateral sensitivity drug, at clinically relevant concentrations. Moreover, given the use of trifluoperazine in the treatment for symptoms of schizophrenia and the role of ABCB1 transporter in tissue blood barriers and other physiologic functions, the finding in this study may have implications beyond cancer chemotherapy.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Fenotiazinas/farmacologia , Trifluoperazina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Macrolídeos/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...